Exercise 7.2.14

The rate of evaporation from a particular spherical drop of liquid (constant density) is proportional to its surface area. Assuming this to be the sole mechanism of mass loss, find the radius of the drop as a function of time.

Solution

Let $d m / d t$ be the rate that mass changes with respect to time, and let S be the sphere's surface area. Then the following relationship can be written from the first sentence.

$$
\frac{d m}{d t} \propto-S
$$

The symbol \propto means "proportional to," and the minus sign is included because an increase in S leads to a decrease in $d m / d t$. This proportionality can be changed to an equation by including a proportionality constant k. This constant is different for different liquids and measures how fast a given liquid evaporates.

$$
\frac{d m}{d t}=-k S
$$

Mass is the product of densiy ρ and volume V.

$$
\frac{d(\rho V)}{d t}=-k S
$$

Since the density is assumed to be constant, it can be pulled in front of the derivative.

$$
\rho \frac{d V}{d t}=-k S
$$

For a sphere, $V=(4 / 3) \pi r^{3}$ and $S=4 \pi r^{2}$.

$$
\begin{aligned}
& \rho \frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right)=-k\left(4 \pi r^{2}\right) \\
& \rho\left(4 \pi r^{2} \frac{d r}{d t}\right)=-k\left(4 \pi r^{2}\right)
\end{aligned}
$$

Divide both sides by $\left(4 \pi r^{2}\right) \rho$ to solve for $d r / d t$.

$$
\frac{d r}{d t}=-\frac{k}{\rho}
$$

Integrate both sides with respect to t.

$$
r(t)=-\frac{k t}{\rho}+C
$$

Assume that at $t=0$ the sphere radius is R_{0} so that the initial condition is $r(0)=R_{0}$. Apply it now to determine C.

$$
r(0)=C=R_{0}
$$

Therefore,

$$
r(t)=R_{0}-\frac{k t}{\rho}
$$

